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Abstracr We derive the current algebra of supersymmetric principal chiral models with a 
Wess-Zumino term. At the critical point one obhins two commuting super-affine Lie algebras 
as expected, but, in general. there are intemvining fields connecting both right and left sectors, 
analogously to the bosonic case. Moreover, in the present supersymmetric extension we have 
a quadratic algebra, rather than an affine Lie algebra. due to the mixing between bosonic and 
fermionic fields: the purely fermionic sector displays an affine Lie algebra 3s well. 

Since the discovery of higher conservation laws for integrable models, algebraic methods 
have been frequently advocated in order to display the structure of the dynamics of field 
theory. Higher conserved charges imply non-trivial constraints for correlation functions, 
and one often finds such a strong algebraic machinery that a calculable 5'-matrix turns out 
to be a consequence. In the case of conformally invariant field theory, the Virasoro (and 
Kac-Moody) constraints fix all correlation functions. 

Current algebra for integrable nonlinear sigma models were, up to very recently [ I ]  
largely unknown. Nevertheless, the Yang-Baxter relations are the best tools for exploring 
non-perturbative properties of integrable models [Z]. The starting point of the formulation 
is, very generally, the consideration of the Poisson brackets between the spatial part of the 
Lax pair, leading to a Lie-Poisson algebra containing an antisymmetric numerical r-matrix 
which obeys the Yang-Baxter relation. The Yang-Baxter relation leads to an (almost) unique 
S-mahix of the theory [5-7, 171. On the other hand, an algebraic strategy has also been 
effectively and successfully used in the case of 2D conformally invariant theories, in order 
to compute correlation functions [SI, as well as in the case of two-dimensional gravity in 
the light-cone gauge 191. 

Recently, the nonlinear u-model with a Wess-Zumino term has been studied in this 
context [lo]. The current, which corresponds to a piece of the Lax pair of the model [l 11. 
is shown to fulfill a new affine algebra. Such algebras have played an important role in 
several cases in field theory (see [I21 and [13]). The hope is that after quantization we could 
be able to address the problem of computing exact Green functions, by means of higher 
conserved currents. Moreover, the results have been used in order to obtain the algebra of 
non-local charges [3]. As it turns out, the algebra is an extension of the affine Lie algebra, 
including cubic terms. Similar structures have appeared in the literature [4]. We expect to 
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obtain similar structure in the supersymmetric case, where the S-matrix is known to be an 
extension of the purely bosonic counterpart, if not even simpler. With this aim, we study 
the current algebra in the supersymmetric sigma models. 

In the present paper we consider the supersymmetric Wess-Zumino-Witten model 
[14, 151, which is defined by the action 

E Abdullu et ul 

d2x t r a f i g - l a , g + e l ' d r  sd2x6PYtrg~'a,gg;'argrg;'a~g~ 

(1) 
obtained from the superfield G(x,  0) = g(x )  +&f(x)  + f & F ( x ) ,  satisfying the constraint 
Gt(x, e)G(x,  8 )  = 1, after integrating over the Grassman variable 0 (see [14] for details, 
but noticing change in conventions see below and [17]). 

The second term in the right-hand side of (1) is the so-called Was-Zumino term and 
only depends linearly on the time derivative of the field g. Hence it proves useful to rewrite 
it in terms of A&), introduced in order to permit the canonical quantization of the theory 
[16, 171, being defined in such a way that 

and 

We shall use the following notation: a = nA2/4rr, col = 1, y o  = (p i), y'  = Go i), 
and y5  = yay' . When a = zkl we have a super conformally invariant theory. Canonical 
quantization is straightforward, on account of [IO, 16, 171; we have the following canonically 
conjugated momenta: 

and 

where the 
to the field g, in the principal chiral model only 

st term in the right-hand side of (4) i s  the momentum canonia , conjugated 
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which leads, for the fermion component, to the relation 

@ t C j  = -2,'tlrklgljl . 
In the phase space we have the constraint 

(9) 

i 
~ i i  = n$ + a ; i 2 * m k g h 1  (10) 

which must be implemented using the Dirac method [NI. The basic element of the method 
is the dirac matrix 

where 

Fij,kt = (g,+i) ' (x)gi j (x) - gi+i (x) (gl j ) ' (x) .  
We are now ready to study the relevant algebraic properties of the supersymmetric \vzw 

theory. In analogy with the bosonic case [lo], we consider the conserved Noether currents, 
which in the supersymmetric case are given by 

1 
A2 

Fff)[g((&) * (29') + * V S ) + ~ ] L ) ( ~ )  (14) R J* , , (x )  = -- tr ((1 

and 

(15) 
I 

~ , " , ~ ( x )  = ---{U A2 *a)[(-(& F (zt)')g + a i + + ( l *  ~ 5 ) + ] ~ } ( x ) .  

Here we introduced the notation with the indices of a basis ta of the Lie algebra G 
where the fields g are defined, with the structure constants flh defined as 

[fa, ih l  = ffh fc 
and any field J,",FL is defined as 

J:,:" = (J* ,  tforL) = - tr (J:"'"J . 
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In addition, it is important in the case of theories containing fermions to introduce the 
fermionic currents, 

and 
I 

(17) 

Since we know, from the case of the study of supersymmetric non-local charges, that the 
above purely fermionic objects do also show up independently [ 17, 19, 201 of the currents 
[ 121. Moreover, there are also intertwining operators already in the bosonic case [ 10, I], 
which are described by !he fields 

L 
i * , " ( X )  = -a tr[rl+(l T Ys) l l r tu l (x) .  

(18) 
1 

= 2 tr[g'zogtbl(x). 

P2,ab (x )  = - 12 e[gt  i+Rtngtbl(x) 

P * , u b ( x )  = trtgtla g i i  t b k )  . 

In the case of supersymmetric theories we also have the fermionic partner 

(19) 
I 

and 
1 

(20) 

We shall see that after coupling bosons with fermions, an infinite number of fields will 
be present, as a consequence of  a quadratic algebra, which is absent in the purely bosonic, 
as well as in the purely fermionic models. We introduce 

(21) 

(22) 

(23) 

L 

1 

1 
A2 

1 
A2 

1 

KZ,&) = -2 tr[g+~ai:wcl(x) 

Y*,ohcd(.x) = - trIgttgtbgti:tegr~l(x) 

~ k ~ ~ ~ ~ ~ ( x )  = - A= ~ [ s t r ~ s t ~ g t ~ ~ s i i ~ ~ l ( x ) ~  

= -- tr[gttag&lcl(x) 

R 

(24) 

We are now in position to write down the full algebra. The purely right sector is very 
simple, For the purely left sector one substitutes (R --f L) and 01 -+ -a We have 

{JE,<,(x)q Jz,b(r)1 = -;(l @)f:h{(3 * - ( l  
h2 

+-(I T0I)[(3&22or -cr2) i~ ,~- (5T22a+0I2) i~ , ,116(Xi  -Y1) 

52(1 T ~ ) * % b ~ ' ( x I  - Y l )  

- ( I  -(U-) $'-,. + i+R,clls(xI - Yl) 

2 
(25) 

(J,",o(x)z J$,b(Y)l = -if:bb((I -u)2J!,c + (1 fa)2J!,c 

(26) 
7 21'  .R 



We see now in (31) and (32) the explicit appearance of the bosonic intertwiners as 
well as the fermionic one in (31)-(37). Notice also the simplicity of the purely fermionic 
components brackets. In the critical case, 01 + + I  we see that a whole sector decouples 
completely, the same being true for 01 --f - I .  We have in that case a super-affine algebra, 
as expected, and the model is completely soluble. In fact, the conserved charges can be used 
in order to provide a complete solution of the Green functions, the only missing ingredient 
with respect to our computation being the super-Virasoro generators. We finally write down 
the part of the algebra involving the intertwiners. We have 



It is clear now that the algebra is quadratic. Therefore, a new structure arises in the case 
of supersymmetric theories involving the Wzw term. Indeed, integrability of the bosonic 
model [11,21] does not arise in the same manner in the supersymetric case [ 141. However, it 
is certainly true that for 01 = 0 the theory must be integrable. Indeed, there is a considerable 
simplification, but the algebra obtained is still quadratic. If the algebra of non-local charges 
should follow the pattern of the purely bosonic case, the quadratic algebra thus obtained 
must be severely constrained. 
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